- LDA(Latent Dirichlet Allocaton)의 posterior proability와 아래와 같이 collapsed gibbs sampling에 의해 변형된 posterior proability의 유도 과정을 살펴보겠습니다.
\[\begin{align*}
P(\boldsymbol{Z}, \boldsymbol{W};\alpha,\beta) & \propto { \color{blue} \frac{ \ { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k}{\sum_{k=1}^K { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k } \ }\times { \color{green} \frac{ \ {n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v}{\sum_{v=1}^V { n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v } } \\
\\
& \propto {\color{blue} \text{문서에 대한 토픽 가중치} \ } \times {\color{green}\text{토픽에 대한 단어 가중치} \ }
\end{align*}\]
- collapsed gibbs sampling에 대한 내용은 여기에 참조되어 있습니다.
LDA
-
$K$: 토픽 수
-
$D$: 문서 수
-
$N$: 특정 문서의 단어 수
-
$w_{d,n}$: 특정 문서 d에서 n번째 단어로 관측된 값
-
$z_{d,n}$ topic: 특정 문서 d에서 n번째 단어 대한 topic assignment
- $ z_{d,n}$ 는 Multinomial($\theta_d$)에서 샘플링 된 것입니다. ($\theta_d$: Multinomial분포의 모수)
- Multinomial($\theta_d$)는 한번만 시행(샘플)된 것으로 Categorical($\theta_d$)와 동일합니다.
- $\theta_d =[\theta_{d,1}, \theta_{d,2}, …,\theta_{d,K}] \in \mathbb{R}^K, (\sum_k \theta_{d,k}=1, \theta_{d,k} \geq0 , \ k: \text{topic index})$는 $d$번째 문서의 $\text{Dirichlet}_d(\alpha)$에서 샘플링된 것입니다.
- $\alpha= [\alpha_1,\alpha_2, …, \alpha_K]$, symmetry할 경우 $\alpha_1=\alpha_2=\cdot\cdot\cdot= \alpha_K$
-
$w_{d,n} $ word: 특정 문서 d에서 n번째 단어
- $ w_{d,n}$ 는 Multinomial($\phi_k$)에서 샘플링 된 것입니다. ($\phi_k$: Multinomial분포의 모수)
- Multinomial($\phi_k$)는 한번만 시행(샘플)된 것으로 Categorical($\phi_k$)와 동일합니다.
- $\phi_k =[\phi_{k,1},\phi_{k,2},…,\phi_{k,V}] \in \mathbb{R}^V, (\sum_i\phi_{k,v}=1, \phi_{v,i} \geq0 , \ v: \text{Vocabulary index})$는 $k$번째 토픽의 $\text{Dirichlet}_k(\beta)$서 샘플링된 것입니다.
- $\beta= [\beta_1,\beta_2, …, \beta_V]$, symmetry할 경우 $\beta_1=\beta_2=\cdot\cdot\cdot= \beta_V$
\[\begin{align*}
P(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\theta}, \boldsymbol{\phi};\alpha,\beta) = \prod_{i=k}^K P(\phi_k;\beta) \prod_{d=1}^D P(\theta_d;\alpha) \prod_{n=1}^N
P(z_{d,n}\mid\theta_d)P(w_{d,n}\mid \phi_{z_{d,n} \ }) \\
\end{align*}\]
-
$\boldsymbol{Z}$에 대해서 collapsed gibbs sampler 진행 ($\boldsymbol{\theta}, \boldsymbol{\phi} $에 대해서 collapsed)
-
$\boldsymbol{Z}$를 알게되면 $\boldsymbol{\theta}, \boldsymbol{\phi}$ 도 알 수 있음
\[\begin{align*}
P(\boldsymbol{Z}, \boldsymbol{W};\alpha,\beta) &= \int_{\boldsymbol{\theta} \ } \int_{\boldsymbol{\phi} \ } P(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\theta}, \boldsymbol{\phi};\alpha,\beta) \, d\boldsymbol{\phi} \, d\boldsymbol{\theta} \\
&= {\color{blue}[\int_{\boldsymbol{\phi} \ } \prod_{k=1}^K P(\phi_k;\beta) \prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) \, d\boldsymbol{\phi}] }
{\color{green}[ \int_{\boldsymbol{\theta} \ } \prod_{d=1}^D P(\theta_d;\alpha) \prod_{n=1}^N P(z_{d,n}\mid\theta_d) \, d\boldsymbol{\theta}]} \quad \cdot\cdot\cdot \quad (1)
\end{align*}\]
- \(\boldsymbol{\theta} = \{\theta\}^{D}_{d=1} , \ \boldsymbol{\phi} = \{\phi\}^{K}_{k=1}\)는 서로 독립적인 관계를 가지고 있기 때문에, 분리시켜서 생각해 볼수 있습니다.
한 문서에 대한 토픽 분포 ($\boldsymbol{\theta}$)
\[\begin{align*}
\int_{\boldsymbol{\theta} \ } \prod_{d=1}^D P(\theta_d;\alpha) \prod_{n=1}^N P(z_{d,n}\mid\theta_d) \, d\boldsymbol{\theta} &=
\int_{\theta_d} \prod_{d=1}^D P(\theta_d;\alpha) \prod_{n=1}^N P(z_{d,n}\mid\theta_d) \, d\theta_d \\
\end{align*}\]
\[\begin{align}
&\int_{\theta_d} P(\theta_d;\alpha) \prod_{n=1}^N P(z_{d,n}\mid\theta_d) \, d\theta_d \\
&= \int_{\theta_d} \frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \theta_{d,k}^{\alpha_k - 1} \prod_{n=1}^N P(z_{d,n}\mid\theta_d) \, d\theta_d, \quad \quad \cdot\cdot\cdot \quad (2) \\
&\because f(\theta_1, \cdots, \theta_K; \alpha_1, \cdots, \alpha_K) = \frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^k \theta_k ^{\alpha_k - 1}, \quad f:\text{ dirichlet pdf} \\
\end{align}\]
- 다음으로, $P(z_{d,n} \mid \theta_d)$의 pdf를 구해보겠습니다.
- $n^{k}_{d,(\cdot)}$ : $d$번째 문서에서 $k^{th}$ topic으로 할당된 단어들의 수,
- $(\cdot)$: $d$번째 문서에서 $k^{th}$ topic으로 할당된 모든 단어 인덱스
\[\begin{align}
\prod_{n=1}^N P(z_{d,n}\mid\theta_d) & = \prod^{N}_{n=1} \prod^{K}_{k=1}\theta_{d,k}^{[z_{d,n}=k]}, \quad [z_{d,n}=k] \text{ is } 1 \ \ \text{if} \ \ z_{d,n}=k ,\ 0 \ \text{ otherwise} \\
& \because f(z_{d,n} \mid \theta_d) = \prod^{K}_{k=1} \theta^{[z_{d,n}=k]}_i, \quad z_{d,n} \sim \text{Categorical}(\theta_d), \quad f: \text{Categorical pdf}\\
& = \prod^{K}_{k=1}\theta_{d,k}^{n_{d,(\cdot)}^k} , \quad \cdot\cdot\cdot \quad (3) \\ \\
\end{align}\]
-
식(2)에 식(3)결과를 대입하면,
\[\begin{align*}
&= \int_{\theta_d} \frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \theta_{d,k}^{\alpha_k - 1} \prod^{K}_{k=1}\theta_{d,k}^{n_{d,(\cdot)}^k}\, d\theta_d \\
&= \int_{\theta_d} \frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K \theta_{d,k}^{n_{d,(\cdot)}^k+\alpha_k - 1}\, d\theta_d \quad \cdot\cdot\cdot \quad (4) \\
\end{align*}\]
- 그리고 $\theta $에 대한 dirichlet확률분포의 합은 1이 되는 것을 이용합니다.
\[\begin{align*}
&=\frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)}\cdot \frac{\prod_{k=1}^K \Gamma(n_{d,(\cdot)}^k+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{d,(\cdot)}^k+\alpha_k \right)} \quad \cdot\cdot\cdot (5)
&\because \int_{\theta_d} \frac{\Gamma\left (\sum_{k=1}^K n_{d,(\cdot)}^k+\alpha_k \right)}{\prod_{k=1}^K \Gamma(n_{d,(\cdot)}^k+\alpha_k)} \prod_{k=1}^K\theta_{d,k}^{n_{d,(\cdot)}^k+\alpha_k - 1}\, d\theta_d =1\\
\end{align*}\]
- 식(5)는 한 문서에 대한 결과로, 원래 식에 따라 모든 문서에 적용하면,
\[\prod_{d=1}^D \frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)}\cdot \frac{\prod_{k=1}^K \Gamma(n_{d,(\cdot)}^k+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{d,(\cdot)}^k+\alpha_k \right)} \quad \cdot\cdot\cdot (6)\]
한 토픽에 대한 단어의 분포($\boldsymbol{\phi}$)
\[\begin{align*}
&\int_{\boldsymbol{\phi} \ } \prod_{k=1}^K P(\phi_k;\beta) \prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) \, d\boldsymbol{\phi}\\
&= \prod_{k=1}^K \int_{\phi_i}P(\phi_k;\beta) \prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) \, d\phi_i\\
\end{align*}\]
\[\begin{align*}
& \int_{\phi_k}P(\phi_k;\beta) \prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) \, d\phi_k\\
&=\int_{\phi_k}\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)} \prod^{V}_{v=1}
\phi ^{\beta_v-1}_{k,v}\prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) \, d\phi_k \quad \quad \cdot\cdot\cdot \quad (7) \\
&\because f(\phi_1, \cdots, \phi_V; \beta_1, \cdots, \beta_V) = \frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)} \prod_{v=1}^V \phi_{k,v} ^{\beta_v - 1}, \quad f:\text{ dirichlet pdf} \\
\end{align*}\]
- 다음으로, $P(w_{d,n} \mid \phi_{z_{d,n} \ })$의 pdf를 구해보겠습니다.
- $n^{k}_{(\cdot),v}$ : $v$번째 단어가 $k^{th}$ topic으로 할당된 수
\[\begin{align}
\prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) & = \prod^{D}_{d=1} \prod^{N}_{n=1}\prod^{V}_{v=1}\phi_{z_{d,n},v}^{[w_{d,n}=v]} , \quad [w_{d,n}=v] \text{ is } 1 \ \ \text{if} \ \ w_{d,n}=v ,\ 0 \ \text{ otherwise} \\
& \because f(w_{d,n} \mid \phi_{z_{d,n} \ }) = \prod^{V}_{v=1} \phi^{[w_{d,n}=v]}_{z_{d,n},v}, \quad w_{d,n} \sim \text{Categorical}(\phi_{z_{d,n} \ }), \quad f: \text{Categorical pdf}\\
& = \prod_{d=1}^D \prod_{n=1}^N\phi_{ \ {z_{d,n} \ },v}^{n_{(\cdot),v}^k} \\
& = \prod_{v=1}^V \phi_{ \ {z_{d,n} \ },v}^{n_{(\cdot),v}^k} , \quad \cdot\cdot\cdot \quad (8) \\ \\
\end{align}\]
\[\begin{align}
&=\int_{\phi_k}\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)} \prod^{V}_{v=1}
\phi ^{\beta_v-1}_{k,v}\prod_{v=1}^V \phi_{ \ {z_{d,n} \ },v}^{n_{(\cdot),v}^k} \, \, d\phi_k \\
&=\int_{\phi_k}\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)} \prod^{V}_{v=1}
\phi ^{\beta_v-1}_{k,v}\prod_{v=1}^V \phi_{ \ {k},v}^{n_{(\cdot),v}^k} \, \, d\phi_k \\
&=\int_{\phi_k}\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)} \prod^{V}_{v=1}
\phi ^{n_{(\cdot),v}^k+\beta_v-1}_{k,v} \, d\phi_k \quad \cdot\cdot\cdot \quad (9) \\
\end{align}\]
- 식(9)의 constant term을 새로운 dirichlet($n_{(\cdot),v}^k+\beta_k$)를 따르도록 변형해 줍니다.
- $\phi_{k,v} \sim Dir(n_{(\cdot),v}^k+\beta_v)$
\[\begin{align*}
&=\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)}\cdot \frac{\prod_{v=1}^V \Gamma(n_{(\cdot),v}^k+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),v}^k+\beta_v \right)} \int_{\phi_k}\frac{\Gamma\left (\sum_{v=1}^V n_{(\cdot),v}^k+\beta_v \right)}{\prod_{k=1}^K \Gamma(n_{(\cdot),v}^k+\beta_v)}\prod_{v=1}^V\phi_{k,v}^{n_{(\cdot),v}^k+\beta_v - 1}\, d\phi_k\\
\end{align*}\]
- 그리고 $\phi$ 에 대한 dirichlet확률분포의 합은 1이 되는 것을 이용합니다.
\[=\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)}\cdot \frac{\prod_{v=1}^V \Gamma(n_{(\cdot),v}^k+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),v}^k+\beta_v \right)} \quad \cdot\cdot\cdot (10)\quad \quad \because \int_{\phi_k}\frac{\Gamma\left (\sum_{v=1}^V n_{(\cdot),v}^k+\beta_v \right)}{\prod_{k=1}^K \Gamma(n_{(\cdot),v}^k+\beta_v)}\prod_{v=1}^V\phi_{k,v}^{n_{(\cdot),v}^k+\beta_v - 1}\, d\phi_k=1\\\]
- 식(10)는 한 토픽에 대한 결과로, 원래 식에 따라 모든 토픽에 적용하면,
\[\prod^{K}_{k=1}\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)}\cdot \frac{\prod_{v=1}^V \Gamma(n_{(\cdot),v}^k+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),v}^k+\beta_v \right)} \quad \cdot\cdot\cdot (11)\]
- 최종적으로, 식 (1)을 (6)과 (11)로 정리하면,
\[\begin{align*}
P(\boldsymbol{Z}, \boldsymbol{W};\alpha,\beta) &= \int_{\boldsymbol{\theta} \ } \int_{\boldsymbol{\phi} \ } P(\boldsymbol{W}, \boldsymbol{Z}, \boldsymbol{\theta}, \boldsymbol{\phi};\alpha,\beta) \, d\boldsymbol{\phi} \, d\boldsymbol{\theta} \\
&= [\int_{\boldsymbol{\phi} \ } \prod_{k=1}^K P(\phi_k;\beta) \prod_{d=1}^D \prod_{n=1}^N P(w_{d,n}\mid\phi_{z_{d,n} \ }) \, d\boldsymbol{\phi}]
[ \int_{\boldsymbol{\theta} \ } \prod_{d=1}^D P(\theta_d;\alpha) \prod_{n=1}^N P(z_{d,n}\mid\theta_d) \, d\boldsymbol{\theta}] \\
&= \prod_{d=1}^D \frac{\Gamma\left (\sum_{k=1}^K \alpha_k \right)}{\prod_{k=1}^K \Gamma(\alpha_k)}\cdot \frac{\prod_{k=1}^K \Gamma(n_{d,(\cdot)}^k+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{d,(\cdot)}^k+\alpha_k \right)} \times\prod^{K}_{k=1}\frac{\Gamma\left (\sum_{v=1}^V \beta_v \right)}{\prod_{v=1}^V \Gamma(\beta_v)}\cdot \frac{\prod_{v=1}^V \Gamma(n_{(\cdot),v}^k+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),v}^k+\beta_v \right)} \\
\end{align*}\]
\[\begin{align*}
P(\boldsymbol{Z}, \boldsymbol{W};\alpha,\beta) &= P(z_{\hat{d},\hat{n} \ }=\hat{k}, \ z_{-(\hat{d},\hat{n})},\boldsymbol{W};\alpha,\beta )\\
&\propto {\color{red}\prod_{d=1}^D} \frac{\prod_{k=1}^K \Gamma(n_{\hat{d},(\cdot)}^k+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{\hat{d},(\cdot)}^k+\alpha_k \right)} \times\prod^{K}_{k=1} \frac{ \ {\color{red}\prod_{v=1}^V} \Gamma(n_{(\cdot),\hat{v} \ }^k+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),\hat{v} \ }^k+\beta_v \right)} \cdot \cdot \cdot (12)\\
&\propto \frac{\prod_{k=1}^K \Gamma(n_{\hat{d},(\cdot)}^k+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{\hat{d},(\cdot)}^k+\alpha_k \right)} \times\prod^{K}_{k=1} \frac{ \Gamma(n_{(\cdot),\hat{v} \ }^k+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),\hat{v} \ }^k+\beta_v \right)} \\
\\
&\propto \frac{\Gamma({\color{blue} n_{\hat{d},(\cdot)}^{\hat{k} \ }}+\alpha_k)}{\Gamma\left (\sum_{k=1}^K {\color{blue}n_{\hat{d},(\cdot)}^{\hat{k} \ }}+\alpha_k \right)} \frac{\prod_{k=1,k \neq \hat{k} \ }^K \Gamma(n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k \right)} \\
& \quad\quad \times \frac{\Gamma({\color{freq}n_{(\cdot),\hat{v} \ }^{\hat{k} \ }}+\beta_v)}{\Gamma\left (\sum_{v=1}^V {\color{freq} n_{(\cdot),\hat{v} \ }^{\hat{k} \ }}+\beta_v \right)} \prod^{K}_{k=1, k \neq \hat{k} \ } \frac{ \Gamma(n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v \right)} \cdot \cdot \cdot (13) \\
\\
&= \frac{\Gamma({ \color{blue}n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k+{\color{blue}1})}{\Gamma\left (\sum_{k=1}^K {\color{blue} n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k +{\color{blue}1}\right)} \frac{\prod_{k=1,k \neq \hat{k} \ }^K \Gamma(n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k \right)} \quad \because n^{\hat{k} \ } = n^{\hat{k}-(\hat{d},\hat{n})} +1\\
& \quad\quad \times \frac{\Gamma({\color{freq}n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v+{\color{freq}1})}{\Gamma\left (\sum_{v=1}^V {\color{freq} n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v +{\color{freq}1} \right)} \prod^{K}_{k=1, k \neq \hat{k} \ } \frac{ \Gamma(n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v \right)} \cdot \cdot \cdot (14) \\
\\
&= \frac{ \ { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k}{\sum_{k=1}^K { n_{\hat{d},(\cdot)}^{(\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k } {\color{blue}\frac{\Gamma({ n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k)}{\Gamma\left (\sum_{k=1}^K { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k\right)} \frac{\prod_{k=1,k \neq \hat{k} \ }^K \Gamma(n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k \right)} }\quad \because \Gamma( n+1 ) = \Gamma(n) \times n \\
& \quad\quad \times {\frac{ \ {n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v}{\sum_{v=1}^V { n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v } \color{freq} \frac{\Gamma({n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v)}{\Gamma\left (\sum_{v=1}^V { n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v \right)} \prod^{K}_{k=1, k \neq \hat{k} \ } \frac{ \Gamma(n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v \right)} }\cdot \cdot \cdot (15) \\
\\
&= \frac{ \ { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k}{\sum_{k=1}^K { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k } {\color{blue} \frac{\prod_{k=1}^K \Gamma(n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k)}{\Gamma\left (\sum_{k=1}^K n_{\hat{d},(\cdot)}^{k-(\hat{d},\hat{n})}+\alpha_k \right)} }\\
& \quad\quad \times {\frac{ \ {n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v}{\sum_{v=1}^V { n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v } \color{freq} \prod^{K}_{k=1} \frac{ \Gamma(n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v)}{\Gamma\left (\sum_{v=1}^V n_{(\cdot),\hat{v} \ }^{k-(\hat{d},\hat{n})}+\beta_v \right)} }\cdot \cdot \cdot (16) \\
\\
& \propto \frac{ \ { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k}{\sum_{k=1}^K { n_{\hat{d},(\cdot)}^{\hat{k}-(\hat{d},\hat{n})} \ }+\alpha_k } \times {\frac{ \ {n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v}{\sum_{v=1}^V { n_{(\cdot),\hat{v} \ }^{\hat{k}-(\hat{d},\hat{n})} \ }+\beta_v } } \\
\end{align*}\]
Reference
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation